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PREFACE

This report describes the development effort performed by the
Institute for Advanced Computation (IAC) for the U.S. Army Engineer
Topographic Laboratories (ETL) under ETL Project No. 18R3205HT08.

The ETL project monitor for this effort was Mrs. Jane M. Brown of
the Computer Sciences Laboratory (CSL) of ETL.
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SECTION 1

INTRODUCTION

Digital terrain models are playing an increasingly important role in
many map-related tasks. These terrain models can be produced in several
ways; in this research we have concentrated on elevation data resulting
from digital correlation matching of sub-areas from stereo imagery
[Crombie, 1976).

A significant problem In correlation-derived digital terrain models is
the introduction of errors into the elevation data when the stereo
matching algorithm produces mismatches. These mismatches can result
from a variety of conditions, including low contrast in areas of the
images, relief-induced distortions between the Images, and the presence
of ambiguities due to Jdentical objects or highly periodic textures on
the terrain. It is not yet feasible for a correlation algorithm to
handle all of these difficult situations without error. For this
reason, post-processing techniques have been sought to detect and
correct errors which occurred in the correlation process. Work to date
has centered on global techniques such as fitting polynomials to the
data (Jancaitis, 19753 or filtering in either the spatial or frequency
domains [Johnson, 1978).

Global techniques have the drawback that they give identical treatment
to all areas of a digital terrain model. Terrain is rarely uniform in
roughness, so uniform application of a global technique can produce
overamoothing in rough areas, while failing to correct errors in
relatively flat areas. Local techniques, on the other hand, have the
potential for coping with different terrain types within a model. Local

techniques can also easily incorporate other terrain model information,
such as land-use classifications.

In September, 1978, the Institute for Advanced Computation (IAC) was
asked by the U.S. Army Engineer Topographic Laboratories (ETL) to
explore local methods, suitable for parallel implementation, to detect
and correct errors in digital terrain elevation data. The algorithms
developed use constraints on the allowable slope and the allowable
change-in-slope around each point in the terrain data. These measures
are applied in parallel and iterated to achieve the desired results, in
a manner analogous to the relaxation techniques employed by Rosenfeld
[Rosenfeld, Hummel, and Zucker, 1976]. An Investigation has also been
made into the use of land-type classification data to influence the
elevation correction process.
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SECTION 2

THE BASIC ALGORITHMS

The primary objective of this research was the development of techniques
for Improving the internal consistency of digital elevation data. Given
an array of elevation data H[I,J], the ideal result would be to modify
each H[I,J] so that the slopes surrounding it become reasonable,
consistent with one another, and consistent with neighboring slopes.

In this section, we present the basic algorithms suggested by ETL and
discuss the results produced by these algorithms.

2.1 Mamatica Analysis

Ignoring boundary points for the moment, each elevation point H[I,J] has
8 neighbors, which can be described by their direction vectors [DI,DJ]
relative to [I,J).

Direction DI DJ
1 0 1
2 1 1
3 1 0

1 -1
5 0 -1
6 -1 - *

7 -1 0
8 -1 1

The slope from the CI,J]-th point to its K-th neighbor is defined as

SLOPE[I,J,K) = ( H[I.DI[K],J+DJ[K]] - H[I,J) )/DIST[K) (2-1)

where DIST is the Euclidean base-plane distance between [1,J]'s grid
point and that of the neighbor. ETL suggested that three sets of tests
be performed on these slopes: the local neighbor slope consistency
tests, the distant neighbor slope consistency tests, and the slope
constraining tests.

The local neighbor slope consistency tests check the 4 pairs of slopes
crossing a point to see that each pair is consistent, that is, that the
slopes in each pair do not differ by more than a specified amount. If
we define , -

DSLOPL(I,J,K] z SLOPE(I,J,C) - SLOPE[I-DIEK),J-DJ[KJ,KJ ' 2a)

then this test requires that

ABS( DSLOPL[I,J,K] ) j DSLTHRESH K21:4 (2-2b)

.



The distant neighbor slope consistency tests check that the pairs Of*

slopes approaching a point across each of the 8 neighbors Iare
consistent. Here we define .

DSLOPD[I,J,K] SLOPEtI,J,KJ - SLOPEtI+DI[K],J.DJ[K],K) (2-3a)

and require

ABSC DSLOPD[I,J,K) ) DSLTHRESH K=1:8 (2-3b)

The slope constraining tests check each of the 8 slopes immediately
surrounding a point to see that they are not unreasonable, i.e.

ABS( SLOPE[I,J,K) ) < SLTHRESH [=1:8 (2-4)

ETL also suggested that the elevation modification be accomplished by
using the slope consistency tests as an indicator of which way and how
much each elevation should be corrected. From Equations (2-1) and
(2-2a) we see that DSLOPL[I,J,KI is positive when H[I,J] is less than
the average of its 'two neighbors. Thus DSLOPL[I,J,K)>0 is an indication
that H[I,JJ should be moved upward, while DSLOLLI,J,KJ<0 indicates that
it should be moved downward. DSLOPDII,J,K] functions similarly.

ETL suggested threshold ing, then combining these signed change-in-slope
indicators, multiplied by a change-in-height variable, to develop the
modification to each H[I,JJ. If we define

1.0 if DSLOPL[I,J,K] > DSLTHRESH
TL[I,J,K) -1.0 if DSLOPLEI,J,K) -DSLTHRESH (2-5a)

0.0 otherwise
and

1.0 if DSLOPD[I,J,KI > DSLTHRESH
TD[I,J,K) = -1.0- if DSLOPD[I,J,K) < -DSLTHRESH (2-5b)

0.0 otherwise

then the suggested change in height at [I,J) is expressed as

14 8
DH[I,J] =DELHEIGHT*( SUM ( TL(I,J,KJ + SUM ( TD[I,J,K) ( 2-6a)

K=1 K=1

and the H[I,J] are modified by

H'(I,J] H[I,JJ + DHCI,J] (2-6b)

These steps were to be performed in parallel on all elements of the
elevation data array, with the corrections being iterated until the data
ceased to change meaningfully or went into an Oscillatory condition.



2.2 Algorithm Results

This basic algorithm was implemented on IAC's TENEX system and applied
to the data sets described in Appendix A. The results on the artificial
data set, designated PATCH, illustrate some of the problems with this
algorithm.

Consider the results on the following noise spikes for DSLTHRESH=.05 and
DELHEIGHT=8/12. (For economy of space, we will present only one
quadrant of the data; the results are, of course, symmetric.)

The data set

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
+8 0 0 0 0

converged, after one iteration, to

0 0 0 0 0
0 0 0 0 0
-1 0 -1 0 0
+1 +1 0 0 0
0 +1 -1 0 0

In this case, DELHEIGHT causes precisely the right correction to remove
the spike in the dat~a. Notice, however, that the points around the
spike have been perturbed slightly; this oscillatory perturbation is
small enough to escape further notice by DSLTHRESH, so remains in the
data.

When DSLTHRESH is too small to correct the spike completely on the first
pass, the following results are typical. The original data is

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

+24 0 0 0 0

One iteration gave

0 0 0 0 0
0 0 0 0 0

-1 0 -1 0 0
+1 +1 0 0 0

+16 +1 -1 0 0

7
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A second iteration resulted in

0 0 0 0 0
0 0 0 0 0

-2 0 -2 0 0
+2 +2 0 0 0
+8 +2 -2 0 0

The third iteration produced

0 0 0 0 0
-1 0 0 0 0

0 0 -2 0 0
+2 +2 0 0 0
+5 +2 0 -1 0

On the fourth iteration, it converged to

0 0 0 0 0
-1 0 0 0 0
0 0 -2 0 0
+3 +2 0 0 0
+4 +3 0 -1 0

The perturbations in the data are here first reinforced, then serve to
substantiate the presence of the error. The spike is reduced to a
smoothly oscillating hump, which passes the error thresholds, thus
remains in the data.

When DELHEICHT is too large, so that spikes are over-corrected, the
following behaviour can result. Here, DSLTHRESHz.05 and
DELHEIGHT=16/12. The original data is

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
+8 0 0 0 0

Successive iterations give

0 0 0 0 0
0 0 0 0 0

-1 0 -1 0 0
+3 +3 0 0 0
-8 +3 -1 0 0

i i S



then

0 0 0 0 0
-1 0 0 0 0
+4 0 0 0 0
-1 -1 0 0 0
+8 -1 +4 -1 0

then

-1 0 0 0 0
+2 +1 0 0 0

-7 +1 -1 0 0
+3 +6 +1 +1 0
-8 +3 -7 +2 -1

This example does not converge.

When applied to the real data in the sets ETL and WTB1 (see Appendix A
for data set descriptions), these problems were less sharply defined,
but were still in effect. The slow spreading seen in the first two
examples was evident in the resultant smoothing of contours; often
important terrain detail was removed. Spike-like errors, such as the
two-point error on the flat area at the lower right of the ETL data set,
were smoothed to humps rather than removed. For one parameter setting,
the nearly flat area of arroyos in the upper right of the ETL data was
thrown into oscillations which grew in extent, very much like the
behavior shown in the third example.

It was clear that some modifications would have to be made to the basic
algorithm to circumvent these problems. Several additions were tried
(See Appendix B for descriptions of some of these.), but none produced
the desired degree of improvement.

After considering the matter further, we concluded that there were two
separate problems with the correction algorithm suggested by ETL. One
was its inability to distinguish between valid and invalid data at
adjacent points, thus allowing invalid data to corrupt its neighbors.
The second was its inability to generate the correct change in height to
rectify terrain errors on the first attempt.

We chose to attack these two problems separately, by first
distinguishing valid from invalid data, then performing complete
corrections based only on valid data.
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SECTION 3

ERROR DETECTION

Before we can reasonably correct the data, we must first establish a
measure of reliability for each data point. This permits us to give
preference to valid points when forming the corrections.

3.1 Aimple Measures.2 Reliability

We would like to develop a measure of reliability at each point which is
a number between 0.0 (signifying that this point can't be trusted) and
1.0 (meaning that this point looks very good). The TL and TD of
Equation (2-5) each produce a number between -1.0 and 1.0. The sum of
these indicators in Equation (2-6a) is therefore a number between -12.0
and 12.0. Taking the absolute value of this sum, divided by 12.0, gives
a number in the proper 0.0 to 1.0 range, but with its sense
reversed--1.0 means that all of the tests indicated a bad point, while
0.0 indiaates either that there were no objections or that the positive
and negative objections cancelled out. Subtracting this quantity from
1.0 produces the desired range and polarity of values.

4 8
RD[I,J] = 1. - ABS( SUM ( TL[I,J,K] ) + SUM ( TD[I,J,K3 ) )/2. (3-1)

K=1 K=1

A similar measure can be constructed from the slope constraints if w
define

TS[I,J,K) = 1.0 if ABS( SLOPEI,J,K] ) . slope threshold (3-2)

= 0.0 otherwise

then form the analog of Equation (3-1)

8
RSEI,J] = 1. - SUM ( TS[I,J,K) )/8. (3-3)

K=1

3.2 Weighted Iteration of Reliabilities

In forming the above reliabilities, we are performing simple averaging
of the contributions made by each confidence measure. This is the
equivalent of a weighted averaging with all of the weights being equal

to 1.0. We know that the confidence measures are not all of the same
validity, since the data points which formed them vary in validity.
Therefore we should use a true weighted averaging in which the
confidence measures each have different weights. For the slope
constraints, this would be

10



8
SUM( WS[I,J,K] " TS[I,J,K) )
K=1

( RS2[I,J] =1. (3-4)
8

SUM ( WS[I,J,K] )
K=1

The weight for a slope measure should be related to the reliabilities of
the data points which produced the slope. Equation (3-4) is calculating
the reliability of one of these data points, so the information needed
is the validity of the other point. Thus we use

-WS[I,J,K] = RS[IDI[K],J+DJ[K]] (3-5)

In reality, Equations (3-3) and (3-4) are both instances of a more
general iterative form, reminiscent of the relaxation techniques used by
Rosenfeld [Rosenfeld, Hummel, and Zucker, 1976],

8
SUM( RSIEI+DICK],J+DJ[K],N-1]*TS[I,J,K] )
K=1

RSI[I,J,N] = 1. - (3-6)
8

SUM( RSI[I DI[K],J+DJ(K],N-1] )
K=1

The RSI[I,J,O] can be initialized to 1.0 (or any other constant) to
produce the effect of Equation (3-3). However, if other, a priori
knowledge exists about the reliability of the data--such as correlation
coefficients from the stereo matching process--these can be used instead
as the initialization. (For the ETL data set, the use of their
correlation coefficients Rs initialization did not significantly effect
the resulting reliabilities.)

The final slope reliability RS[I,J] is defined to be RSI[I,J,N] after
sufficient iterations that significant changes are no longer being made.
We have used the criterion that the reliabilities have converged when
99% of them are changing less than .05. On the ETL data set, this
criterion is usually met on the third iteration.

Figure 3-1 shows the results of this algorithm on the ETL data set.
(See Appendix A for a discussion of the original data and its errors.)
Note that this reliability measure finds most of the terrain model to be
highly consistent. It successfully points out the error at [18,28),
although it spreads it somewhat to the neighbors. It also detects the
error at [43,39]. Portions of the "error mountain" at the lower right
are detected. This algorithm, however, tends to cast doubt on most of
the points in the sharp ridge lines.

A similar iterative reliability measure can be developed for the slope
consistency tests. Here we have RDI[I,JN]



4m

ii8

SUM( WL[I,J,K,N1]TL[I,J,K]) + SUM( WD[I,J,K,N]'TD[I,J,K])

=. -
(3-7)

4 8
SUM( WL(I,J,K,N)) + SUM( WD(I,J,K,N])
K=I Kal

The weights for the change-in-slope measures depend on the reliabilities
of the three data points which produced the two slopes. Because we are
calculating the reliability of one of these points, we need examine only
the reliabilities of the other two. We have used

WL(I,J,K,N] = MINIMUM( RDIEI DI[K],J+DJCK],N-1J
RDI[I-DI[K],J-DJ[K],N-1) (

(3-B)
WD[I,J,K,N] = MINIMUM( RDI[I+DI[K],J+DJ[K),N-1]

RDI[I 2*DI[K],J+2*DJCK],N-1]

These weight terms are produced on the "weak link" theory, i.e. that
the reliability of a slope difference measure can be no better than the
least reliable elevation which went into it.

As before, the final delta-slope reliability RD[I,J) is defined to be
RDI[I,J,N] after it has converged. Figure 3-2 shows the results of this
algorithm on the ETL data set. Note that this reliability measure finds
almost all of the terrain model to be very consistent. It points out
the error at [18,283 without the spreading exhibited by the slope
measure. It detects the error at [43,391, and sees nothing greatly
wrong with the steep ridges, because they are internally consistent.
However, it detects only a few bad points in the error mountain, because
these points are wrong in a fashion which produced quite consistent
slopes.

For the correction routines, we need to form one reliability at each
point from the two we have developed. One way of achieving this is to
wait until the RSI and RDI have converged, then combine them. Here we
use

R[I,JJ = SQRT( RSI[I,J,M] 0 RDI[I,J,N) (3-9)

where M and N are the iterations at which the RSI and RDI are judged to
have converged, respectively. Figure 3-3 shows Figures 3-I and 3-2
combined in this manner. Note that the downgrading of the steep ridge
is lessened, while the edges of the error mountain are still fairly well
indicated.

Another alternative is to combine the RSI and RDI at each step in the
iterations

RI[I,J,N] SQRT( RSI[I,J,N] I RDI[IJ,N] ) (3-10)

12
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and define the overall reliabilities R[I,J] to be RI[I,J,N] after it
oonverges. Interestingly, the reliabilities produced by this algorithm
are not significantly different from those of Figure 3-3.

3.3 Parameter Setting

Determination of the reliabilities depends on the settings of the
thresholds DSLTHRESH and SLTHRESH. The usual manner of doing this is to
select parameters which seem "reasonable", or those which have been
shown, by experimentation, to work well--"empirically derived
parameters". In an attempt to reduce some of the arbitrariness of
parameter selection, we investigated a technique for statistical
determination of parameters.

Our method is based on the idea that, for most digital terrain models,
there will be a preponderance of good data interspersed with a small
percentage of bad. Often, this percentage of bad data can be estimated.

The next step is to histogram the slopes and changes-in-slopes for the
entire terrain model. For the ETL data, we get the following table.
The % columns report cumulative percentage through that class.

Class Slope I D-Slope
Limits Count % Count %

0.0-0.1 1251o 67.17 5829 64.59

0.1-0.2 3078 83.70 1701 83.44
0.2-0.3 1574 92.15 663 90.79
0.3-0.4 832 96.62 357 94.75
0.4-0.5 364 98.57 181 96.75
0.5-0.6 146 99.36 105 97.92
0.6-0.7 56 99.66 70 98.69
0.7-0.8 f,_22 99.77 ZLJ42 99.16

.('S-t.V Lf 2 -4

If, for example, we feel that the percentage of bad points is
approximately 4%, then the suggested parameters for this data set are
SLTHRESH=0.4, DSLTHRESH=0.5--the points at which our histogram
approximates 96%. These are the parameters we have used for the
examples in this chapter.

13
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Figure 3-1.

These are the reliabilities for the ETL data set, produced by 3

iterations of slope analysis. Initial reliabilities were 0.5;
SLTHRESH=0.4, PCNULL=0.5. Integers are 10 times the reliabilities;
blank spaces indicate rel!abllities near 1.0.
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Figure 3-2.

These are the reliabilities for the ETL data set, produced by 3
iterations of ohange-!n-slope analysis. Initial reliabilities were 0.5;
DBLTHRESH=O.5, PCNULL=0.5.
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Figure 3-3.

These are the reliabilities for the ETL data set, produced by combining
Figures 3-I and 3-2 in the manner described in Equation (3-9).
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SECTION 4

ERROR CORRECTION

In Section 3, we developed reliability measures on the data, suitable
for use as weighting coefficients. In this section, we explore methods
for using these weights in correcting the data.

4.1 Direct Correction

As we noted in Section 2.2, the desired correction algorithm is one
which will produce, in a single step, an elevation which is as
compatible as possible with its neighbors, given their reliabilities.
This implies that some sort of weighted averaging might be in order.

Simple weighted averaging, however, has an obvious drawback. As we
pointed out in Section B.2, elevations at the tops of ridge lines are
likely to be lowered if they are replaced by the average of their
neighbors; the inverse is true of stream bottoms. Weighting the
neighbors does not change this fact, so weighted averaging is not the
algorithm we want.

In Section B.2, we also discussed the use of a slope extrapolation
technique. We tried combining this technique, as set forth in Equation
(B-2), with the weighting technique of Equation (3-8). When we tried
this on the PATCH data set, we found that a scan across the edge of the
cliff, which originally read

48 48 48 48 48 48 32 32 32 32 32 32

turned into

48 48 48 48 54 42 38 26 32 32 32 32

Further iteration caused the oscillation to spread. Clearly this
algorithm is not the one we want, either.

After some thought, we concluded that the iterative algorithm suggested
by ETL was attempting to seek at each point the elevation value which
maximized the reliability (hence minimized the change-in-slope measure).
Consequently, we next attempted replacing each point with the elevation
that minimized the weighted average change-in-slope. Mathematically,
this involves finding the H'[I,J] which minimizes

4 8
SUM( WL[IJK]eABS(DSLOPL(IJK]) )+SUM( WDEIJK]eABS(DSLOPD[IJK]) )
Kai K=1

8 (4-1)
SUM( WL(I,J,K] )*SUM( WD[I,J,K] )
Ktl 1
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where the WL, WD, DSLOPL, and DSLOPD are as defined previously, but use
the combined R[I,J], with each hypothesized H'[I,J] substituted for
H[I,J]. The solution is obtained by predicting the upper and lower
bounds on the desired elevation (based .on the maximum and minimum
elevations extrapolated by the neighboring points), then conducting a
binary search to minimize the expression between these limits.

We first tried this algorithm on the PATCH data set. As expected, the
noise spikes on the flat and on the ramp disappeared completely on the
first iteration. We were surprised to note that the oscillator at the
top was also completely removed. (Other algorithms had smeared it to an
average value.) Also surprising was the fact that the lower oscillator
was not changing internally, but was being "eaten away" at the edges;
after 4 iterations it, too, was completely removed. Furthermore, the
cliff edge was changing only at its ends--apparently there was enough
internal consistency in the planes above and below the edge that the
algorithm could only "get a bite on" the ends, where boundary effects
lowered the data consistency. With several iterations, a slight
smoothing propagated along the edge.

We then tried this algorithm on the ETL data set; Figure 4-1 shows the
results. Note that one iteration has removed most of the 1- and 2-point
errors, leaving only the very tiny ones. The contours, although
somewhat smoothed, dc not show the drastic over-smoothing produced by
the original ETL algorithm.

The function on which this algorithm is based does not have an
analytical solution, but must be minimized by iterative "trial and
error" techniques. Consequently, this algorithm is fairly expensive to
apply. In an attempt to reduce this expense, we tried a related
algorithm which, instead of minimizing the sum of the absolute value of
the slope differences, minimizes the sum of the squares of the slope
differences--a function which has an analytical solution. Use of this
modification got no further than the PATCH data set. It removed the
spikes properly, but set the ramp edge into ringing oscillations similar
to what the extrapolation methods had produced. Expensive or not,
Equation (4-1) produced the desired effect, so this is our algorithm of
choice.

4.2 Constraints on Corrections

When every point in the elevation matrix is replaced in this manner, as
in Figure 4-1, some smoothing of the contours will result. This can
cause the loss of detail, especially in areas of ridge tops and canyon
bottoms. To avoid this, constraints have been Imposed on the use of
this smoothing.

An obvious constraint is to only change an elevation if its reliability
Is less than some threshold RTHRESH. This, by itself, does not produce
satisfactory results.
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A second constraint Is based on the statistical relationship of the
adjusted elevation with its neighbors. To get a measure of the
variation in the neighborhood, we first calculate the weighted standard
deviation of the elevattonso-ef-the 8 neighboring points. If we define

8
SUM( R[I+DI[K],J+DJ[K]] • H[I DI[K],J+DJ[K]] )
K=I

WHEAN(H) = 8
SUM( R[I+DI[K],J+DJCK]] )
K=1

then we can express WSIGMA(H) = (4-2)

8
SUM( R[I+DI[K],J+DJ[K]] '( H[I+DI[K],J+DJ[K]] - WMEAN(H) )^2 )
K=1

SQRT( %
8

SUM( R[I+DI[K],J+DJ[K]] )
K=1

We then compare the suggested change in elevation (the original

elevation minus the newly calculated one) against this WSIGMA,

ABS( H[I,J] - H'[I,J] ) > SIGCONST * WSIGMA(H) (4-3)

(SIGCONST allows us to turn this feature up or down; it is usually 1.0.)
We then implement the change only if it is larger than this local
variability measure. The rationale behind this constraint is that if
the change is large, it is likely that the original data is in error, so
the change should be implemented. However, if the change is small, then
the original data is hypothesized to represent terrain detail rather
than error, and the original data should be retained.

Figure 4-2 shows the results of our correction algorithm when
constrained by both of these suggestions, that is, implementing a change
it the reliability is less than RTHRESH or If the change is greater than
SIGCONSTOWSIGMA, for RTHRESH=0.5 and SIGCONST=1.0. Here, all of the
major I- and 2-point errors have been detected and reasonably corrected.
A few small contours remain, and a few of the contours are a bit rough,
but the original terrain detail is intact. The error mountain is still
there, but It has been compressed into a steep anomaly that 'he
reliability measure can continue to detect.

Having changed the elevation data with this correction algorithm, It is
possible that some of the points adjacent to corrected points will now
need adjustment. The total algorithm--iterating to find the reliability

measures, then correcting the data--can itself be iterated, until
sufficient correction is deemed to have been made.
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These algorithms are sufficiently complicated that no proof of
convergence is practical. Since we are selecting elevations which will
minimize the change-in-slope, It is reasonable to expect that the
algoritbm will eventually converge. On .the PATCH data set, the
unconstrained algorithm had ceased to make meaningful changes after four
iterations. On the ETL data set, iterations beyond the first pass of
the unconstrained algorithm produced mostly small, unimportant changes.
The constraints, which limit the number of points changed, expedite this
convergence. No occurrances of oscillatory behaviour have been
observed, although, again, it cannot be proven that oscillation is
impossible.
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Figure 4-1.

This figure shows the ETL data set after 1 Iteration of the change-in-
slope minimization algorithm, without any constraints. Parameters for
the run were: confidences in~tialized to 0.5, DSLTHRESH=0.5,
SLTHRESHO.I, PCNULL=0.5, RTHRESH=0.O, SIGCONST=0.0. Elevations range
from 363 meters at [49,16] to 527 meters at (1,53; contours are at 10
meter intervals.
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Figure 4-.2.

This figure shows the ETL data set after I iteration of the change-in-
slope minimization algorithm, with correction constraints. Parameters
for the run were: confidences initialized to 0.5, DSLTHRESH=0.5,
SLTHRESH=0.I, PCNULL:0 .5, RTHRESH=0. 5, SIGCONST= 1.0.
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SECTION 5

LAND-TYPE CLASSIFICATION INFORMATION AS AN AID

Under this contract to ETL, we also made an investigation into the use
of land-type classification data to influence the elevation error
detection and correction processes. For this analysis, ETL provided an
array of land-type classifications for each elevation point in the
terrain model. This classification data is shown in Figure 5-1.

The simplest way to allow classification data to influence the detection
and correction processes is to permit it to influence the parameters
which control the processes. The most sensitive of these are the
evaluation thresholds, DSLTHRESH and SLTHRESH. Consequently we
implemented these two parameters as table look-up functions of the
classification for each point.

DSLTHRESH DSLTHRE CLASSEI,J] I
(5-1)

SLTHRESH SLTHR[ CLASSLI,J] I

These parameters are set in the statistical fashion described in Section
3.3. Instead of forming the single histogram shown there, we form N
separate ones, one for each classification. Thus for each point, wei
first look up its classification to determine which histogram to use,
then calculate the slopes and changes in slopes, and attribute them to
the appropriate bins of that histogram. Parameters for each class are
then chosen independently, from that class's histogram.

Attempts to use the ETL classifications to influence the data met with
mixed success, mainly because these classifications pertain more to
ground cover than to elevation, slope, and roughness information. Some
of these classes can be used to infer surface data; for instance, 2-lane
roads, orchards, drainage canals, and buildings could be expected to lie
on fairly flat ground. The class for dry creeks, however, is used for
both the flat area of arroyos at the upper right of the model and for
the steep canyons in the hilly area. Likewise, the class for dirt roads
does not distinguish between agricultural roads in the orchard and jeep
trails in the hills. To compound the problem, the classifications are
not without error. In rows 33, 34, and 35 between columns 12 and 19,
there is a dry creek marked which follows a contour along a rather steep
hillside. Examination of the aerial photo lead us to believe this is an
outcropping of rimrock, with bushes.

We felt that the idea of using outside knowledge as to the land-type
deserved a fair trial. Consequently, we set about deriving from the ETL
classifications and the elevation data set itself a new set of land-type
classifications. For -each point, we first examined the ETL
classification. If it indicated a 2-lane road, an orchard, a drainage
ditch, or a building, we reclassified the point as being flat. If the
point was a dirt road, then we examined the neighboring classes; if the
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road adjoined one of our flat classes, then that point was reclassified
as being flat. Points which did not meet either of these criteria were
classified by the use of two roughness measures, the standard deviation,
and the deviation from a least squares plane, shown in Equation (B-5).
Rather arbitrarily, we reclassified as flat those points with
ordinary-SIGMA less than 2.; points with planar-SIGMA greater than 5.
were reclassified as rough; everything else fell into the medium slope
category. This produced fairly reasonable results, with a few
exceptions around the spike errors in the lower right area. In the
interests of a fair test of the knowledge base, these points were
corrected by hand. Figure 5-2 shows the classifications which resulted.

We then tried the algorithm of Sections 3.2 and 4.2 on the ETL data set,
using appropriate parameters for these Clssifications. Figure 5-3
shows the reliability measures which resulted. Most of the model is
found to be quite consistent, although there is some degradation in the
steep hills. The errors, especially the spikes in the flat and the
error mountain, are clearly marked. The results of one iteration of
correction are shown in Figure 5-4. These contours do not differ
greatly from the results of Figure 4-2; however, after eight iterations
of the algorithm, we obtained Figure 5-5. Notice that the error
mountain in the lower right corner has been completely removed. Without
this additional classification information, we were not able to
duplicate this feat.

24"

- - ...



1820 30 40

66667A5AAAAAdAtAAAA444A444 44AAAAAA444A44444444444A-
666614541A4444144A445dA4444444544AAAA
666666 6 6 6 6 7 7 5 5 55 A A 4 5 A A 4 A A A 4 4 A 4 A A A A A A A A 

666666666%-6667555555445554444444444444444'
111 1666666666667777755555AA644A4A4A44AA4464444

11555A1144A44444666554A555444444444A44A4A44
II 661155A555554AA41 111 115555544A4444444454d5555444-
166611655555666664111111111AA4444444444444444444-
1666611666d7766666A664AA44611111554444A44A4A414A4
111661166667777661666666644S551114A4411111111111
661166111 16666661555555666A444411 11111111111 1444
66111666611166611777776A444441111555561111155-
66611666666166166666664 44555554A41111155AA444111
55666777666611 16666444445S5555645661 111111444444-
756666 176666664A4AA4A6665557766555551 1661144444A
67777641166766444 4455666677766555555 1114 1114444-

28 666444771166766445511555766655555566661144411145-
4A455477111667655111117766667777775556611AAA4114-
77775577711666775577771 1666666666677766611444414-
666677777761666677666661111166666666665561114441-
666666677E,64116666666556665116566661111551111441-
666666677A44111666666677775511666111111111111144-
4666666675644 11166666666667771111555S55544A444411-
4466644667E4441116666666666667755557777554445557-
644666466575544111666666666666677776466777455776-
4646666644575554771166666666666666667446667777666-

30 64E6665557755755114666666666666666754441111111-
6A66666A557667755S51AAA66664666A6666677766611111-
64.64445446A667755111116664444~h444666111111444-

44446664 4666444A4677S554 1111555544A40045! 5544A~~4444

44d666665555456665644775444 11444111555A444444

554464646666446%66646A775A45 4411155002444455-
6 66 46 46 4 S6 6 6 5.4 6 6 6 46446 666 6A44 S51111111000 8 21 44 11-

AO 626A645A44666664446A4645556644201 111111111111111-
60446455.411!1111144 42222555444004 41544 455544 55
1111111t5l11i1666144422225554444A415445555544455
e146445551122266114224224444A44444155555644554L
6144455541222222222224422444444464514444444554
60A4555 12A442222244A42244222222222233322244
6004455411244464422244A222AAA222 3333332222224
614465441 22?Z44466644444662222220013333303003322

41 45AS400O54444466Ad4444448000888S880868888

Figure 5-1.-

This figure shows the land-type classification data provided by ETL.
Classes are:

0 Buildings 5 Bare Hillside
1 Trails or Dirt- Roads 6 Hillside with Bushes
2 Drainage Canal 7 Ridge
3 Orchard 82-Lane Primary Road
4l Dry Creek with Bushes
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Figure 5-2.

This figure shows the land-type classification data which we derived.
Classes are:

I Flat Areas
2 Medium Sloped Areas
4 Very Rough Areas
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Figure 5-3.

This figure shows the reliabilities for the ETL data set, resulting from

3 Iterations of the combined slope and change-in-slope analysis, using

the derived Classification data. Initial reliabilities were 0.5,

DSLTHRESH=[0.2,0.3,0.8], SLTHRESH=[0.1,0.3,0.5], PCNULL=1.0.
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Figure 5-4I.

This figure shows the ETL data set after one iteration of the change-
In-slope minimization algorithm, with correction constraints and using
the derived classification data. Initial reliabilities were 0.5,
DSLTHRESH=[O.2,0.3,0.8], SLTHRESHz[O.,10.3,0.53, PCNULLz1.O,
RTHRESHa0.5, SIGCONSTal .0.
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Figure 5-5.

This figure shows the ETL data set after eight Iterations of the
c hange-in-slope mInim~zat~on algorithm, with correction constraints and
using the derived classification data. Initial reliabilities were 0.5,
DSLTHRESH=(O.2,0.3,O.83, SLTHRESH4O0.1,0.3,0.53, PCNULLal.0,
RTHRESHx0.5, SIGCONSTz1 .0.
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SECTION 6

CONCLUSIONS

Under this contract to ETL, we have developed a method for detecting
errors In digital terrain models and an algorithm for correcting these
errors. We have also investigated the use of land-type classifications
in influencing these processes. In this section we present our
conclusions from the results we have obtained.

We began with an algorithm suggested by ETL which used the consistency
of each point with its neighbors in determining how to correct that
point. Work with this algorithm convinced us that the data correction
task was really two subtasks--1) detection of points which were in error
and 2) correction of the errors. To this end, we separated the tasks,
so that we first distinguished valid from invalid data, then performed
corrections based on the valid data points.

The error detection algorithm combines thresholding of slope and of
change-in-slope information in an iterative weighted fashion to produce
a measure of the reliability of each elevation point. This algorithm
handles all points identically, so is highly suitable for implementation
on a parallel processor such as IAC's ILLIAC 4 or ETL's STARAN. The
algorithm is fairly efficient; a breadboard implementation on IAC's
TENEX system requires approximately 20 seconds of CPU time for the 3
iterations required for the reliabilities to converge on the ETL data
set. The indications given by these reliabllities are somewhat
parameter depencent, but a statistical method for chosing adequate
parameters has been developed and presented.

The error correction algorithm selects replacement elevations by finding
the minimum of a change-in-slope measure at each point. This algorithm
is fairly well suited for parallel implementation; the search for a
minimum in the inner loop should be reformulated if a parallel
implementation 1s desired. The algorithm is, unfortunately, not very
efficient--our breadboard implementation requires over 90 seconds of
TENEX CPU time for a single iteration of correction on the ETL data set.

The correction algorithm Js both robust and flexible. It will produce

reasonable terrain corrections over a wide range of parameters to the
error detection process, freeing the user from excessive worry about
precise parameter selection. The bare algorithm, unconstrained in any
way, tends to smooth the contours of a terrain model. For some models,
this is a desirable effect. For models with more widely spaced points,
such as the ETL data set, this can result In the removal of terrain

detail. The constraints which have been developed for this algorithm
permit the user to control the amount of smoothing desired.

The recommended use of these techniques is as follows. For most digital
terrain models, a single iteration of the error detection and correction
process should be performed. This will remove small errors--those
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consisting of only 1 or 2 points and those of narrow extent. A second
pass of the error detection scheme should be then applied, to assess the
resulting model. Large areas of points with low reliabilities should be
dealt with separately, perhaps by having the correlation algorithm go
over these areas again, given their now corrected context; or perhaps
they should be hand corrected. It is not recommended that the
correction alg6rithm be iterated more than 2 or 3 times, as the ratio of
payoff to cost diminishes severely after the first iteration. Also,
correction of large errors is risky by this method, since the algorithm
is, in essence, extrapolating the surrounding terrain into the void
caused by the error. The results of such large-scale extrapolation are
known to be unreliable.

When exterior knowledge in the form of land-type classification is
available, it can significantly improve the error detection process.
This improvement allows the error correction process to handle even
large errors in the data in a fairly reasonable fashion. The land-type
data, however, must be directly related to the land-form types, and must
be correct. Techniques should be developed to correct machine-derived
classifications, both separately and in conjunction with elevation data.
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APPENDIX A

DATA SETS

The algorithms described in this research were developed using three
sets of data. This appendix describes and illustrates these data sets.
(In what follows, co-ordinates on the maps, such as [I,J], refer to the
point in row I and column J.)

A.1 The PATCH Data Set

The first data set on which any algorithm was tried was an artificial
one, called PATCH, shown in Figure A-i. The data set is divided into 4
areas or patches (hence its name).

The base of the data set is a flat plane at level 32, except in the
upper right quarter, where the base is a plane sloping from 32 on the
left to 62 at the right edge. The interface between the sloped plane at
the upper right and the flat plane at the lower right is a cliff which
gradually increases in height from left to right.

The upper left quarter has an oscillator in its center, consisting of an
area of the form

32 32 32 32 32 32 32
32 40 32 40 32 40 32
32 32 32 32 32 32 32
32 40 32 40 32 40 32
32 32 32 32 32 32 32
32 40 32 40 32 40 32
32 32 32 32 32 32 32

The lower left quarter contains a similar oscillator of the form

32 32 32 32 32 32 32 32
32 40 32 40 32 40 32 32
32 32 40 32 40 32 40 32
32 40 32 40 32 40 32 32
32 32 40 32 40 32 40 32
32 40 32 40 32 40 32 32
32 32 40 32 40 32 40 32
32 32 32 32 32 32 32 32

Both the upper and lower right quarters have had several noise spikes
superimposed on them. These features, along with the cliff and the
oscillators, provide ample opportunity for an algorithm to show us its
less desirable traits. Indeed, several algorithms were discarded after
making a poor showing on this data set.
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A.2 The USGS Da1 Set--WTB1

When we first began our research, ETL had not yet sent us a data set.
The IAC archives contained a digital terrain model of the White Tail
Butte, Wyoming( 7.5' quadrangle, which had been sent to us under an
earlier digital terrain model processing contract with USGS. For this
report, we use a window of data out of the southeast corner of the
quadrangle. It is designated WTB1, and is shown in Figure A-2.

The terrain of White Tail Butte quad is fairly rough, consisting of a
number of buttes cut by rugged canyons. The buttes are separated by
broad, flat valleys, in contrast to the steep slopes surrounding them.
The chosen area is crossed diagonally by one of these flat valleys, with
steep buttes on either side.

USGS characterized this data set as noisy. There are many small closed
contours cluttering up the flat areas, and many of the contours have a
rough, jigged appearance. The data set is fairly typical of stereo
derived elevation data over an area with low grey-level contrast.

A.3 The ETL Data Set

The digital terrain model we received from ETL was of an area near
Phoenix, Arizona, and is shown in Figure A-3. This model also provides
a selection of terrain types.

The major feature of the area is the end of a very rough range of hills,
occupying the upper left 2/3 of the model. To the right of this is an
area of fairly flat arroyos; below it is an agricultural area, bounded
by an irrigation canal and a highway. The lower right corner contains
an orchard, visible on both USGS topo maps and on the aerial photos
provided us by ETL.

The hilly part of the model is fairly consistent. There are a few
places, such as in the ridge at the very top, where the contours contain
"glitches", due to mismatched poiats. There are a few short closed
contours, as well. The most glaring error here is a large depression in
the middle of the peak which is just above and to the right of center
(co-ordinates [18,28]). The area of arroyos is fairly clean, having
only a few short or jagged contours.

The agricultural area at the bottom of the model is rather messy. There

are a fair number of small contours, representing noise spikes, and the
contour which crosses the area has a number of strange crooks in it.
The area occupied by an orchard on the aerial photo is covered in the
terrain model by a fairly large, steep hill--Improbable in the light of
the highly regular orchard, the irrigation canal, and the highway which
are all In that vicinity. (We have nicknamed this feature Error
Mountain.) This, clearly, ±s a model in need of correction.

This data set was provided with (XY,Z) triples for each data point.
Tbese were formed by laying down a grid of points In one image, finding
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their matches in the second image, then determining the 3-D points which
correspond to these matches. The (X,Y) portion of the data thus
approximates a grid, but is perturbed slightly at each point by the
relief. To simplify our calculations, we have assumed that the data is
on a true grid; and have ignored the (X,Y) data.
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Figure A-1.

Ts is a contour map of the PATCH artificial data set. The data points
are an a nominal 1001 Sr'd spacing; elevations range from 321 at [1,13
to 621 at [1,49]; data resolution is 1. Cntour$ are at 4, intervals.
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Figure A-2.

This is a contour map or the WTB1 data set. The data points are on a 50
meter (164') grid. Elevations range from 38143' at (149,161 to 4202' at
(41,12]; data resolution is 1'. Contours are at 20' intervals.
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Figure A-3.

This is a contour map of the ETL data set. The data points are on an
approximate 45 meter grid. Elevations range from 345 meters at [143,39]
to 530 meters at (1,5]; data resolution is 0.1 meters. Contours are at
10 meter intervals.
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APPENDIX B

VARIATIONS ON THE BASIC ALGORITHMS

In attempts to remove undesirable effects from the basic algorithm, we
tried several variations on the themes suggested to us by ETL. This
appendix documents those innovations.

B.i Threshold ModifiQations

In ETL's proposed algorithm, each slope comparison generates a vote on
the adjustment to the value at the point in question. This vote equals
.1 if the difference in slopes exceeds DSLTHRESH Cie, the point should
be adjusted upward), 0 if the absolute difference does not exceed
DSLTHRESH, or -1 if the difference exceeds -DSLTHRESH (ie, the point
should be adjusted downward). This graphs as

0

-i

-DSLTHRESH 0 DSLTHRESH

This function detects and adjusts points which are highly inconsistent
with at least one of their neighbors, but does nothing to points which
are slightly inconsistent with most of their neighbors. In the case of
the White Tail Butte data set, m:,ny of the noise points in the data were
missed by this thresholding technique, so we also tried

0

-1

I I

-DSLTHRESH 0 DSLTHRESH

which permits a point to be changed If several of its neighbors complain
about it a little bit. These 2 functions are extreme cases of
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-DSLTHRESH 1 0 1 .DSLTHRESH
-PCHULL PCNULL

The ETL algorithm with this modification was run on the WTBI data set;
Figure B-I shows the results. The central canyon bottom shows
considerable improvement, with much of the contour noise reduced. The
canyon walls show a large degree of smoothing, however, and a fair
amount of the small side-channel detail is lost.

B.2 Extreme Error Pre-Correctlon

We next addressed the problem of large spike errors, which are spread
into consistent, but incorrect, humps. It was felt that such errors
should be detected and removed in advance of the processing.

Detection of the spike errors was accomplished by a technique known in
image processing as "Castering" [Quam, 19713. This is a statistical
method which postulates that the data is moderately consistent over
local areas. It calculates the expected value of the data (the mean)
and the expected variation (the standard deviation, sigma) over a local
area around a point, then compares

ABS( H - MEAN(H) ) > CONST * SIGMA(H) (B-1)

where CONST is a Ootstant signifying the cutoff level at which a point
Is to be considered bad. In our detections, we utilized a 3x3 area
surrounding each point and a cutoff of 2.0.

Once a point has been detected, it must be plausibly corrected. An
early version of the algorithm simply replaced each point by the mean of
Its neighbors. This, however, tended to squash the peaks of hills,
which were often marked as being at odds with their neighbors. More
reasonable results were obtained by averaging the extrapolations of the
surrounding slopes coming into a point,

8
R'CX,J] SUM( 2*H[I DI[KI,J+DJtK]] - H[I.2*DI[K],J 2*DJ[KI] ) (B-2)

Ks

Figure 5-2 shows the results of two iterations of this latter algorithm.
Note that the huge depression at E18,28] has been plausibly corrected,
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that many of the small contours in the lower part of the data set have
been removed, and that the hole at [43,39] has been mostly filled.
Other small errors and the major systematic error in the lower right
corner have escaped the detection process.

B.3 Chancenin-Heitht Modifiers

The obvious drawback of the single DELHEIGHT constant in Equation (2-6a)
was that it could not respond to the variations in terrain roughness
exhibited by different areas. What was needed was a measure of the
variability of the elevations in an area, to be used in tempering
DELHEIGHT.

Once again, we used the standard deviation of the elevations in an area
as a measure of variability or roughness. At each point, we calculated

SIGMA(H) = SQRT( MEAN(H^2) - MEAN(H)^2 ) (B-3)

Then modified Equation (2-6b) to read

H'[I,J] = H[I,J] + SIGMA(H[I,J])*DH[I,JJ (B-4)

This had the desirable effect of making the corrections respond to the
terrain roughness--nearly flat areas received small corrections, while
rougher areas got larger corrections. The algorithm still had a
tendency to spread peaks rather than correction them, and to perform too
much smoothing on detail in the terrain.

The problem with oscillations from too large corrections continued to be
a possibility, should DELHEIGHT be set too high. Even for parameter
settings which were otherwise reasonable, some portions of the data set
sometimes went into mild oscillations along contours on steep hillsides.

After some thought, we determined that this problem stemmed from our
variation measurement. The standard deviation, in essence, fits a least
squares horizontal plane to the data, then measures the deviations from
this plane. In a hillside area, a horizontal plane is a poor fit to the
data, and the variability measure has little to do with how a particular
point differs from its neighbor. To correct this situation, we
implemented a variability measure which first fits a least squares
generalized plane to the data, then measures the vertical deviation of
the data from this plane.

For this measure, we replace Equation (B-3) with (B-5)

MEAN(DIOH)A2 MEAN(DJ§H)^2
SIGMA(H) a SQRT( MEAN(H2) - MEAN(H)^2 - )

MEAN(DI-2) MEAN(DJ^2)

and proceed as before. Figure B-3 shows the results of 10 iterations of
this algorithm on the data set of Figure B-2. The extreme smoothing and
loss of detail Indicates that this algorithm is still not the one we
want.
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Figure B-i.

This figure shows the portion of the White Tail Butte data set known as
VTD1 after 2 iterations Of the algorithm described in Equations (2-5)
and (2-6), as modified In Section B-1. Parameters for the run were:
DSLTHRESJI.20/164, DELHEIGHT0i2/i, PCKUiLL*O.O. Contours are at 20'
intervals.
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Figure B-2.

This figure shows the ETL Phoenix data set after 2 iterations Of spike
detection and correction as described in Equations (B-1) and (B-2).
Parameters were: area a 3X3, cutoff constant a 2.0. Contours are at 10
meter Intervals.
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Figure B-3.

This figure shows the data from Figure 8-2 after 10 Iterations of the
algorithm described in Equations (2-5) and (2-6) as modified by Sections
3-1 and Equations (B-4) and (B-5). Parameters for the run were
DSLTHBESHz.1, DELIIEIGHTzl/12, PCNULLsO.O. Contours are at 10 meter
Intervals.
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